Abstract
The FitzHugh--Nagumo equations are known to admit fast traveling pulse solutions with monotone tails. It is also known that this system admits traveling pulses with exponentially decaying oscillatory tails. Upon numerical continuation in parameter space, it has been observed that the oscillations in the tails of the pulses grow into a secondary excursion resembling a second copy of the primary pulse. In this paper, we outline in detail the geometric mechanism responsible for this single-to-double-pulse transition, and we construct the transition analytically using geometric singular perturbation theory and blow-up techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.