Abstract

Folded saddle-nodes occur generically in one parameter families of singularly perturbed systems with two slow variables. We show that these folded singularities are the organizing centers for two main delay phenomena in singular perturbation problems: canards and delayed Hopf bifurcations. We combine techniques from geometric singular perturbation theory—the blow-up technique—and from delayed Hopf bifurcation theory—complex time path analysis—to analyze the flow near such folded saddle-nodes. In particular, we show the existence of canards as intersections of stable and unstable slow manifolds. To derive these canard results, we extend the singularly perturbed vector field into the complex domain and study it along elliptic paths. This enables us to extend the invariant slow manifolds beyond points where normal hyperbolicity is lost. Furthermore, we define a way-in/way-out function describing the maximal delay expected for generic solutions passing through a folded saddle-node singularity. Branch points associated with the change from a complex to a real eigenvalue structure in the variational equation along the critical (slow) manifold make our analysis significantly different from the classical delayed Hopf bifurcation analysis where these eigenvalues are complex only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.