Abstract

We study the gapped phase of Kitaev's honeycomb model (a $Z_2$ spin liquid) on a lattice with topological defects. We find that some dislocations and string defects carry unpaired Majorana fermions. Physical excitations associated with these defects are (complex) fermion modes made out of two (real) Majorana fermions connected by a $Z_2$ gauge string. The quantum state of these modes is robust against local noise and can be changed by winding a $Z_2$ vortex around one of the dislocations. The exact solution respects gauge invariance and reveals a crucial role of the gauge field in the physics of Majorana modes. To facilitate these theoretical developments, we recast the degenerate perturbation theory for spins in the language of Majorana fermions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.