Abstract

An important task when processing dynamic PET images is to identify the time-activity curves (TACs) of the pure tissues, along with their corresponding spatial proportions. This step, often referred to as unmixing or factor analysis, is based on a loss function which measures the discrepancy between the observed data and the model. This loss function should be chosen according to the statistical properties of the noise, which is in this case hard to characterize. Indeed, while dynamic PET images results from a decay process that can be statistically described by a Poisson distribution, acquisition and post-filtering reconstruction drastically change the nature of the noise. In the literature dedicated to factor analysis of dynamic PET images, a common and underlying assumption consists in assuming that the dynamic PET images are corrupted by an additive Gaussian or by a Poisson noise. These assumptions lead to the choice of the squared Euclidian distance and the Kullback-Leibler divergence. We propose here to consider the β-divergence, which is able to encompass a wide family of divergence measures corresponding to various noise distributions. This loss function is incorporated into three different factor models and evaluated using four sets of synthetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.