Abstract

Quantitative estimation of crop nitrogen is the key to site-specific management for enhanced nitrogen (N) use efficiency and a sustainable crop production system. As an alternate to the conventional approach through wet chemistry, sensor-based noninvasive, rapid, and near-real-time assessment of crop N at the field scale has been the need for precision agriculture. The present study attempts to predict leaf N of wheat crop through spectroscopy using a field portable spectroradiometer (spectral range of 400–2500 nm) on the ground in the crop field and an imaging spectrometer (spectral range of 400–1000 nm) from an unmanned aerial vehicle (UAV) with the objectives to evaluate (1) four multivariate spectral models (i.e., artificial neural network, extreme learning machine [ELM], least absolute shrinkage and selection operator, and support vector machine regression) and (2) two sets of hyperspectral data collected from two platforms and two different sensors. In the former part of the study, ELM outperforms the other methods with maximum calibration and validation R2 of 0.99 and 0.96, respectively. Furthermore, the image data set acquired from UAV gives higher performance compared to field spectral data. Also, significant bands are identified using stepwise multiple linear regression and used for modeling to generate a wheat leaf N map of the experimental field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call