Abstract
The advent of three-dimensional convolutional neural networks (3D CNNs) has revolutionized the detection and analysis of COVID-19 cases. As imaging technologies have advanced, 3D CNNs have emerged as a powerful tool for segmenting and classifying COVID-19 in medical images. These networks have demonstrated both high accuracy and rapid detection capabilities, making them crucial for effective COVID-19 diagnostics. This study offers a thorough review of various 3D CNN algorithms, evaluating their efficacy in segmenting and classifying COVID-19 across a range of medical imaging modalities. This review systematically examines recent advancements in 3D CNN methodologies. The process involved a comprehensive screening of abstracts and titles to ensure relevance, followed by a meticulous selection and analysis of research papers from academic repositories. The study evaluates these papers based on specific criteria and provides detailed insights into the network architectures and algorithms used for COVID-19 detection. The review reveals significant trends in the use of 3D CNNs for COVID-19 segmentation and classification. It highlights key findings, including the diverse range of networks employed for COVID-19 detection compared to other diseases, which predominantly utilize encoder/decoder frameworks. The study provides an in-depth analysis of these methods, discussing their strengths, limitations, and potential areas for future research. The study reviewed a total of 60 papers published across various repositories, including Springer and Elsevier. The insights from this study have implications for clinical diagnosis and treatment strategies. Despite some limitations, the accuracy and efficiency of 3D CNN algorithms underscore their potential for advancing medical image segmentation and classification. The findings suggest that 3D CNNs could significantly enhance the detection and management of COVID-19, contributing to improved healthcare outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have