Abstract
Numerous investigations have illuminated the profound impact of phosphate on the adsorption of uranium, however, the effect of phosphate-mediated surface modification on the reactivity of zero-valent iron (ZVI) remained enigmatic. In this study, a phosphate-modified ZVI (P-ZVIbm) was prepared with a facile ball milling strategy, and compared with ZVIbm, the U(VI) removal amount (435.2 mg/g) and efficiency (3.52×10−3 g·mg−1·min−1) of P-ZVIbm were disclosed nearly 2.0 and 54 times larger than those of ZVIbm respectively. The identification of products revealed that the adsorption mechanism dominated the removal process for ZVIbm, while the reactive modified layer strengthened both the adsorption pattern and reduction performance on P-ZVIbm. DFT calculation result demonstrated that the binding configuration shifted from bidentate binuclear to multidentate configuration, further shortening the Fe-U atomic distance. More importantly, the electron transferred is more accessible through the surface phosphate layer, and selectively donated to U(VI), accounting for the elevated reduction performance of P-ZVIbm. This investigation explicitly underscores the critical role of ZVI's surface microenvironment in the domain of radioactive metal ion mitigation and introduces a novel methodology to amplify the sequestration of U(VI) from aqueous environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.