Abstract
Remote sensing (RS) has revolutionized field data collection processes and provided timely and spatially consistent acquisition of data on the terrestrial landscape properties. This research paper investigates the relationship between Wind Erosion (WE) and Remote Sensing (RS) techniques. By examining, analyzing, and reviewing recent studies utilizing RS, we underscore the importance of wind erosion research by exploring indicators that influence the detection, evaluation, and modeling of wind erosion. Furthermore, it identifies research gaps particularly in soil erodibility estimation, soil moisture monitoring, and surface roughness assessment using RS. Overall, this research enhances our understanding of WE and RS and offers insights into future research directions. To conduct this study, we employed a two-fold approach. First, we utilized a non-systematic review approach by accessing the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database. Subsequently, we conducted a systematic review of the relevant literature on wind erosion and remote sensing in the core collection of the Web of Science (WoS) database. Additionally, we employed the VOSviewer bibliometric software to generate a cooperative keyword network analysis, facilitating the advancements and identifying emerging areas of WE and RS research. With a non-systematic review, we focused on examining the current state and potential of remote sensing for mapping and analyzing following indicators of wind erosion modelling: (1) soil erodibility; (2) soil moisture; (3) surface roughness; (4) vegetation cover; (5) wind barriers; and (6) wind erosion mapping. Our study highlights the widespread utilization of freely available RS data, such as MODIS and Landsat, for WE modeling. However, we also acknowledge the limitations of high resolution sensors due to their high costs. RS techniques offer an efficient and cost-effective approach for mapping erosion at various scales and call for a more comprehensive and detailed assessment of soil erosion at regional scales. These findings provide valuable guidance for future research endeavors in this domain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have