Abstract

Various electrocatalysts are extensively examined for their ability to selectively produce desired products by electrochemical CO2 reduction reaction (CO2RR). However, an efficient CO2RR electrocatalyst doesn't ensure an effective co-catalyst on the semiconductor surface for photoelectrochemical CO2RR. Herein, Bi2S3 nanorods are synthesized and electrochemically reduced to Bi nanoplates that adhere to the substrates for application in the electrochemical and photoelectrochemical CO2RR. Compared with commercial-Bi, the Bi2S3-derived Bi (S-Bi) nanoplates on carbon paper exhibit superior electrocatalytic activity and selectivity for formate (HCOO-) in the electrochemical CO2RR, achieving a Faradaic efficiency exceeding 93%, with minimal H2 production over a wide potential range. This highly selective S-Bi catalyst is being employed on the Si photocathode to investigate the behavior of electrocatalysts during photoelectrochemical CO2RR. The strong adhesion of the S-Bi nanoplates to the Si nanowire substrate and their unique catalytic properties afford exceptional activity and selectivity for HCOO- under simulated solar irradiation. The selectivity observed in electrochemical CO2RR using the S-Bi catalyst correlates with that seen in the photoelectrochemical CO2RR system. Combined pulsed potential methods and theoretical analyses reveal stabilization of the OCHO* intermediate on the S-Bi catalyst under specific conditions, which is critical for developing efficient catalysts for CO2-to-HCOO- conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.