Abstract

BackgroundThe species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters.ResultsWe describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56).ConclusionsWe find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to behavioral and molecular data, the female structures are evolving 2/3 as fast as the non-constant third positions of the COI barcoding gene. They display less convergent evolution in characters (CI = 0.54) than the third positions or sepsid mating behavior (CICOI = 0.36; CIBEHAV = 0.45).

Highlights

  • The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence

  • 1) Testing the species-specificity of female genitalia in Sepsidae Morphological descriptions General description Sepsidae Our description is restricted to the cuticular elements of the reproductive tract, which are: the tubular vagina, paired dorsal spermathecae and accessory glands, the dorsal sclerite, the ventral receptacle, the ventral evagination, the tubular inverted ovipositor, and the internalized sternite VIII (St VIII)

  • The spermathecal ducts and the ducts of the accessory glands respectively open anterodorsally and posterolaterally into the vagina (Figure 1). This region of the vagina wall associated with the duct openings is, with the exception of Ortalischema albitarse and Orygma luctuosum (Figure 6), modified into a dorsal sclerite, which can be very diverse in shape and degree of sclerotization

Read more

Summary

Introduction

The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. In Diptera, some studies use morphological data for investigating post-copulatory sexual selection through female choice [e.g: Muscidae, [18], Dryomyzidae [27], and Tephritidae, [28]], sperm competition [e.g.: Drosophilidae, [11,26,29]] or sexual arms races [e.g.: Scathophagidae, [22]]. These studies indicate that females can influence paternity by differentially storing sperm from various males in separate sperm storage organs (e.g., spermathecae) and controlling which sperm is used for fertilizing eggs [19,26,30]. Based on studies of incopula pairs of Microsepsis and Archisepsis, this is the case in Sepsidae, sometimes involving the formation of an internal spermatophore [33,34,35]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.