Abstract

Abstract Installation of Wet Gas Metering System (WGMS) on a platform for the purposes of real-time measurement of liquid and gas production rates as well as performance monitoring as part of reservoir and production optimization management are quite common nowadays in Malaysia. Nonetheless, understanding of wells production deliverability invariably measured using these Wet Gas Meter (WGM) which provides the notion of production rates contributed by the wells are paramount important, eventually the produced fluids will be processed by various surface equipment at the central processing platform before being transport to onshore facilities. However, the traditional WGM are known to operate within ±10% accuracy, whereby the confidence level on measurement of the produced fluids can be improved either by updating with accurate PVT flash table or combination of results from performing tracer dilution technique for data verification. Sarawak Gas Field contains a number of gas fields offshore East Malaysia, predominantly are carbonate type formation, where one (1) of the field operated by PETRONAS Carigali Sdn.Bhd.(PCSB) is a high temperature accumulation at which temperature at the Gas Water Contact (GWC) approximately 185°C and full wellstream Flowing Tubing Head Temperature (FTHT) records at 157°C. Cumulative field production of five (5) wells readings from WGM had shown 9.1% differences as compared to the export meter gas readings. As part of a strategy to provide maximum operational flexibility, improvement on accuracy of the WGM is required given that the wells have higher Technical Potential (TP) but are limited by threshold of the multi-stage surface processing capacity. This also impacts commerciality of the field to regaining the cost of capital investment and generate additional revenue especially when there is a surge in network gas demand, as the field unable to swiftly ramp-up its production to fulfill higher gas demand considering the reported production figures from cumulative WGM surpassing the surface equipment Safe Operating Envelope (SOE). Our approach begins with mass balance check at the WGMS and export meter including the fuel, flare and Produced Water Discharge (PWD) to check mass conservation by phases because regardless different type of phases change occurs at topside the total mass should be conserved (i.e. for total phases of gas, condensate and water) provided that precise measurement by the metering equipment. Tracer dilution measurement of gas, condensate and water flowrates were used to verify the latest calibrated Water Gas Ratio (WGR) and Condensate Gas Ratio (CGR) readings input into the WGM. Consequently, PVT separator samples were also taken via mini-separator for compositional analysis (both gas and condensate) and for mathematical recombination at the multi-rates CGR readings to generate a representative PVT compositional table. Simultaneously, process model simulation run was conducted using full wellstream PVT input to validate total field production at the export point. This paper presents practical approach to balance the account, to ensure the SOE at topside as well as to improve the PVT composition at the WGM for high temperature field that emphasizes on understanding of compositional variations across production network causing significant differences in total field production between WGM and the allocation meter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call