Abstract

The role of satellite cells and DNA unit size in determining muscle size was examined by inhibiting postnatal skeletal muscle development by using hindlimb suspension. Satellite cell mitotic activity and DNA unit size were determined in the soleus muscles from hindlimb-suspended and age-matched weight-bearing rats before the initiation of hindlimb suspension, at the conclusion of a 28-day hindlimb-suspension period, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-suspended rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb suspension, but they were the same (P > 0. 05) as those of weight-bearing rats 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, nuclei per millimeter, and DNA unit size for the hindlimb-suspended rats were significantly (P < 0.05) smaller than for the weight-bearing rats at all recovery times. Satellite cell mitotic activity was significantly (P < 0.05) higher in the soleus muscles from hindlimb-suspended rats 2 wk after reloading, but it was the same (P > 0.05) as in weight-bearing rats 9 wk after reloading. Juvenile soleus muscles failed to achieve normal muscle size 9 wk after reloading because there was incomplete compensation for the hindlimb-suspension-induced interruptions in myonuclear accretion and DNA unit size expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call