Abstract

Muscular efficiency during exercise has been used to interrogate aspects of human muscle energetics, including mitochondrial coupling and biomechanical efficiencies. Typically, assessments of muscular efficiency have involved graded exercises. Results of previous studies have been interpreted to indicate a decline in exercise efficiency with aging owing to decreased mitochondrial function. However, discrepancies in variables such as exercise stage duration, cycling cadence, and treadmill walking mechanics may have affected interpretations of results. Furthermore, recent data from our lab examining the ATP to oxygen ratio (P:O) in mitochondrial preparations isolated from NIA mouse skeletal muscle showed no change with aging. Thus, we hypothesized that Delta Efficiency (∆€) during steady-rate cycling exercise would not be altered in older healthy subjects compared to young counterparts regardless of biological sex or training status. Young (21-35 years) and older (60-80 years) men (n=21) and women (n=20) underwent continual, progressive leg cycle ergometer tests pedaling at 60 RPM for 3 stages (35, 60, 85 W) lasting 4 minutes. ∆€ was calculated as: (∆ Work Accomplished/∆ Energy Expended). Overall, cycling efficiencies were not significantly different in older compared to young subjects. Similarly, trained subjects did not exhibit significantly different exercise efficiency compared to untrained. Moreover, there were no differences between men and women. Hence, our results obtained on healthy young and older subjects are interpreted to mean that previous reports of decreased efficiency in older individuals were attributable to metabolic or biomechanical comorbidities, not aging per se.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.