Abstract
Heart disease is a fatal illness responsible for approximately 36% of deaths in 2020. Therefore, it is important to pay attention to and better anticipate the risk of heart disease. One technological contribution that can be made is through information related to the risk of heart disease. Classification techniques in data mining can be used to diagnose and identify the risk of heart disease earlier by processing medical data and making predictions. This study compares the effectiveness of two classification algorithms, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), in predicting the risk of heart disease using a Kaggle dataset consisting of 303 records with 14 attribute columns. The data is divided into 70% for training and 30% for testing. The software used in this study is Orange Data Mining to build the SVM and KNN models. The results show that the SVM accuracy is 85.6%, while KNN achieves 81.1%. Based on the confusion matrix, the SVM algorithm has a lower error rate compared to KNN. In conclusion, the SVM algorithm is superior to KNN in predicting the risk of heart disease. These findings indicate that SVM has a better potential in identifying individuals at high risk of experiencing a heart attack. This research can contribute to the development of a more accurate medical decision support system for early detection of heart disease.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have