Abstract

We study the robustness of the evolution of a quantum system against small uncontrolled variations in parameters in the Hamiltonian. We show that the fidelity susceptibility, which quantifies the perturbative error to leading order, can be expressed in superoperator form and use this to derive control pulses that are robust to any class of systematic unknown errors. The proposed optimal control protocol is equivalent to searching for a sequence of unitaries that mimics the first-order moments of the Haar distribution, i.e., it constitutes a 1-design. We highlight the power of our results for error-resistant single- and two-qubit gates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call