Abstract
We prove that every primary basic semi-algebraic set is homotopy equivalent to the set of inscribed realizations (up to Möbius transformation) of a polytope. If the semi-algebraic set is, moreover, open, it is, additionally, (up to homotopy) the retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of \({\mathbb {Q}}\) are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the Mnëv universality phenomenon. Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.