Abstract
Abstract We construct a large family of neighborly polytopes that can be realized with all the vertices on the boundary of any smooth strictly convex body. In particular, we show that for d ≥ 4 there are superexponentially many combinatorially distinct neighborly d-polytopes on n vertices that admit realizations inscribed in the sphere. These are the first examples of inscribable neighborly polytopes that are not cyclic polytopes, and provide the current best lower bound for the number of combinatorial types of inscribable polytopes (which coincides with the current best lower bound for the number of combinatorial types of polytopes). Via stereographic projections, this translates into a superexponential lower bound for the number of combinatorial types of (neighborly) Delaunay triangulations in ℝ d for d ≥ 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.