Abstract

The charge-carrier transport model based on the multiple-trapping quasi-band theory with the Gaussian or exponential energy distributions of traps for the two-layer structure of the molecularly doped polymer sample is used to explain the experimentally observed constancy of the flat plateau on time-of-flight curves in a wide electric-field range. The constant shape of the time-of-flight curve under the condition of nonequilibrium transport is observed for the exponential, rather than Gaussian, energy trap distribution. This observation may be used to distinguish between these trap distributions. Finding the true Poole–Frenkel constant requires that the nonequilibrium transport in molecularly doped polymers be taken into account during treatment of the data on the field dependence of mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call