Abstract

Number-conserving cellular automata (NCCA) are particularly interesting, both because of their natural appearance as models of real systems, and because of the strong restrictions that number-conservation implies. Here we extend the definition of the property to include cellular automata with any set of states in Z , and show that they can be always extended to “usual” NCCA with contiguous states. We show a way to simulate any one dimensional CA through a one-dimensional NCCA, proving the existence of intrinsically universal NCCA. Finally, we give an algorithm to decide, given a CA, if its states can be labeled with integers to produce a NCCA, and to find this relabeling if the answer is positive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.