Abstract

The model systems for self-organized quantum dots formed from elemental and compound semiconductors, namely Ge grown on Si(001) and InAs on GaAs(001), are comparatively studied by scanning tunneling microscopy. It is shown that in both material combinations only two well-defined families of faceted and defect-free nanocrystals exist (and coexist). These three-dimensional islands, pyramids, and domes show common morphological characteristics, independent of the specific material system. A universal behavior is further demonstrated in the capping-passivation process that turns the nanocrystals in true quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.