Abstract

We present a theory for band-tuned metal-insulator transitions based on the Kubo formalism. Such a transition exhibits scaling of the resistivity curves in the regime where Tτ>1 or μτ>1, where τ is the scattering time and μ the chemical potential. At the critical value of the chemical potential, the resistivity diverges as a power law, R_{c}∼1/T. Consequently, on the metallic side there is a regime with negative dR/dT, which is often misinterpreted as insulating. We show that scaling and this "fake insulator" regime are observed in a wide range of experimental systems. In particular, we show that Mooij correlations in high-temperature metals with negative dR/dT can be quantitatively understood with our scaling theory in the presence of T-linear scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call