Abstract

Matter exhibits phases and their transitions. These transitions are classified as first-order phase transitions (FOPTs) and continuous ones. While the latter has a well-established theory of the renormalization group, the former is only qualitatively accounted for by classical theories of nucleation, since their predictions often disagree with experiments by orders of magnitude. A theory to integrate FOPTs into the framework of the renormalization-group theory has been proposed but seems to contradict with extant wisdom and lacks numerical evidence. Here we show that universal hysteresis scaling as predicted by the renormalization-group theory emerges unambiguously when the theory is combined intimately with the theory of nucleation and growth in the FOPTs of the paradigmatic two-dimensional Ising model driven by a linearly varying externally applied field below its critical point. This not only provides a new method to rectify nucleation theories, but also unifies the theories for both classes of transitions and FOPTs can be studied using universality and scaling similar to their continuous counterpart when nucleation and growth are properly taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.