Abstract
The nature of the highly dense matter inside the supernova remnant compact star is not constrained by terrestrial experiments and hence modeled phenomenologically to accommodate the astrophysical observations from compact stars. The observable properties of the compact stars are highly sensitive to the microscopic model of highly dense matter. However, some universal relations exist between some macroscopic properties of compact stars independent of the matter model. We study the universal relation including the stars containing exotic degrees of freedom such as heavier strange and non-strange baryons, strange quark matter in normal and superconducting phases, etc. We examine the universal relations for quantities moment of inertia - tidal love number - quadrupole moment. We also study the correlation of non-radial f-mode and p-mode frequencies with stellar properties. We find the f-mode frequency observes the universal relation with dimensionless tidal deformability but the p-mode frequency does not show a good correlation with stellar properties. The p-mode frequency is sensitive to the composition of the matter. We find that universal relation is also applicable for stars with exotic matter in the core of the star with several models of exotic matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.