Abstract
It is shown that in a large class of disordered systems with singular alloy-type disorder and non-local media-particle interactions, the marginal measures of the induced random potential and the finite-volume integrated density of states (IDS) are infinitely differentiable in higher dimensions. The proposed approach complements the classical Wegner estimate which says that the IDS in the short-range models is at least as regular as the marginal distribution of the disorder. In the models with non-local interaction the finite-volume IDS is much more regular than the underlying disorder. In turn, smoothness of the finite-volume IDS is responsible for a mechanism complementing the Lifshitz tails phenomenon. The new eigenvalue concentration estimates give rise to relatively simple proofs of Anderson localization in several classes of discrete and continuous long-range models with arbitrarily singular disorder. The present paper addresses the model with power-law decay of the potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.