Abstract

We give a criterion based on reflection symmetries in the spirit of Jitomirskaya–Simon to show absence of point spectrum for (split-step) quantum walks and Cantero–Moral–Velázquez (CMV) matrices. To accomplish this, we use some ideas from a recent paper by the authors and collaborators to implement suitable reflection symmetries for such operators. We give several applications. For instance, we deduce arithmetic delocalization in the phase for the unitary almost-Mathieu operator and singular continuous spectrum for generic CMV matrices generated by the Thue–Morse subshift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.