Abstract

The boundary charge that accumulates at the edge of a one-dimensional single-channel insulator is known to possess the universal property, that its change under a lattice shift towards the edge by one site is given by the sum of the average bulk electronic density and a topologically invariant contribution, restricted to the values $0$ and $-1$ [Phys. Rev. B 101, 165304 (2020)]. This quantized contribution is associated with particle-hole duality, ensures charge conservation and fixes the mod(1) ambiguity appearing in the Modern Theory of Polarization. In the present work we generalize the above-mentioned single-channel results to the multichannel case by employing the technique of boundary Green's functions. We show that the topological invariant associated with the change in boundary charge under a lattice shift in multichannel models can be expressed as a winding number of a certain combination of components of bulk Green's functions as function of the complex frequency, as it encircles the section of the energy axis that corresponds to the occupied part of the spectrum. We observe that this winding number is restricted to values ranging from $-N_c$ to $0$, where $N_c$ is the number of channels (orbitals) per site. Furthermore, we consider translationally invariant one-dimensional multichannel models with an impurity and introduce topological indices which correspond to the quantized charge that accumulates around said impurity. These invariants are again given in terms of winding numbers of combinations of components of bulk Green's functions. Through this construction we provide a rigorous mathematical proof of the so called nearsightedness principle formulated by W. Kohn [Phys. Rev. Lett. 76, 3168 (1996)] for noninteracting multichannel lattice models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.