Abstract

Measurement-induced phase transitions (MIPT) have attracted increasing attention due to the rich phenomenology of entanglement structures and their relation with quantum information processing. Since physical systems are unavoidably coupled to environment, quantum noise needs be considered in analyzing a system with MIPT, which may qualitatively modify or even destroy certain entanglement structure of the system. In this Letter, we investigate the effect of quantum noise modeled by reset quantum channel acting on each site with probability $q$ on MIPT. Based on the numerical results from the Clifford circuits, we show that the quantum noise can qualitatively change the entanglement properties - the entanglement obeys ``area law'' instead of ``volume law'' with projective measurement rate $p<p_{c}$. In the quantum noise induced ``area law'' phase, the entanglement exhibits a novel $q^{-1/3}$ power-law scaling. Using an analytic mapping of the quantum model to a classical statistical model, we further show that the ``area law'' entanglement is the consequence of the noise-driven symmetry-breaking field and the $q^{-1/3}$ scaling can be understood as the result of Kardar-Parisi-Zhang (KPZ) fluctuations of the directed polymer with an effective length scale $L_{\rm{eff}} \sim q^{-1}$ in a random environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.