Abstract
Given a critical quantum spin chain, we show how universal information about its quantum critical point can be extracted from wavefunction overlaps. More specifically, we consider overlap between low-energy eigenstates of the spin chain Hamiltonian with different boundary conditions, namely periodic boundary conditions and open boundary conditions. We show that such overlaps decay polynomially with the system size, where the exponent only depends on the central charge. Furthermore, the bulk-to-boundary operator product expansion (OPE) coefficients can be extracted from the overlaps involving excited states. We illustrate the proposal with the Ising model and the three-state Potts model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.