Abstract

For commutative rings, we introduce the notion of a {\em universal grading}, which can be viewed as the "largest possible grading". While not every commutative ring (or order) has a universal grading, we prove that every {\em reduced order} has a universal grading, and this grading is by a {\em finite} group. Examples of graded orders are provided by group rings of finite abelian groups over rings of integers in number fields. We generalize known properties of nilpotents, idempotents, and roots of unity in such group rings to the case of graded orders; this has applications to cryptography. Lattices play an important role in this paper; a novel aspect is that our proofs use that the additive group of any reduced order can in a natural way be equipped with a lattice structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call