Abstract

Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)∖{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call