Abstract

An array of non-Hermitian optical waveguides can operate as a laser or as a coherent perfect absorber, which corresponds to a spectral singularity of the underlying discrete complex potential. We show that all lattice potentials with spectral singularities are characterized by the universal form of the gain-and-loss distribution. Using this result, we systematically construct potentials characterized by several spectral singularities at arbitrary wavelengths, as well as potentials with second-order spectral singularities in their spectra. Higher-order spectral singularities demonstrate a greatly enhanced response to incident beams, resulting in the excitation of high-intensity lasing modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.