Abstract
Abstract In this paper we prove that $\forall \textrm{FO}$, the universal fragment of first-order logic, is superfluous in $\varSigma _2^p$ and $\varPi _2^p$. As an example, we show that this yields a syntactic proof of the $\varSigma _2^p$-completeness of value-cost satisfiability. The superfluity method is interesting since it gives a way to prove completeness of problems involving numerical data such as lengths, weights and costs and it also adds to the programme started by Immerman and Medina about the syntactic approach in the study of completeness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have