Abstract

Quantum information processing is in real systems often limited by dissipation, stemming from remaining uncontrolled interaction with microscopic degrees of freedom. Given recent experimental progress, we consider weak dissipation, resulting in a small error probability per operation. Here, we find a simple formula for the fidelity reduction of any desired quantum operation, where the ideal evolution is confined to the computational subspace. Interestingly, this reduction is independent of the specific operation; it depends only on the operation time and the dissipation. Using our formula, we investigate the situation where dissipation in different parts of the system has correlations, which is detrimental for the successful application of quantum error correction. Surprisingly, we find that a large class of correlations gives the same fidelity reduction as uncorrelated dissipation of similar strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call