Abstract

Temporal dissipative solitons have been widely studied in optical systems, which exhibit various localized structures and rich dynamics, and have shown great potential in applications including optical encoding and sensing. Yet, most of the soliton states, as well as the switching dynamics amongst, were fractionally captured or via self-evolution of the system, lacking of control on the soliton motion. While soliton motion control has been widely investigated in coherently seeded optical cavities, such as microresonator-based dissipative solitons, its implementation in decoherently seeded systems, typically the soliton mode-locked lasers, remains an outstanding challenge. Here, we report the universal dynamics and deterministic motion control of temporal dissipative solitons in a mode-locked fibre laser by introducing a scanned spectral filtering effect. We investigate rich switching dynamics corresponding to both the assembly and the disassembly of solitons, revealing a complete and reversible motion from chaotic states to soliton and soliton-molecule states. Significant hysteresis has been recognized in between the redshift and blueshift scan of the motorized optical filter, unveiling the nature of having state bifurcations in dissipative and nonlinear systems. The active soliton motion control enabled by filter scanning highlights the potential prospects of encoding and sensing using soliton molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.