Abstract

Due to increasing demands on speed and security of data processing, along with requirements on measurement precision in fundamental research, quantum phenomena are expected to play an increasing role in future technologies. Special attention must hence be paid to omnipresent decoherence effects, which hamper quantumness. Their consequence is always a deviation of the quantum state evolution (error) with respect to the expected unitary evolution if these effects are absent. In operational tasks such as the preparation, transformation, transmission, and detection of quantum states, these effects are detrimental and must be suppressed by strategies known as dynamical decoupling, or the more general dynamical control by modulation developed by us. The underlying dynamics must be Zeno-like, yielding suppressed coupling to the bath. There are, however, tasks which cannot be implemented by unitary evolution, in particular those involving a change of the system’s state entropy. Such tasks necessitate efficient coupling to a bath for their implementation. Examples include the use of measurements to cool (purify) a system, to equilibrate it, or to harvest and convert energy from the environment. If the underlying dynamics is anti-Zeno like, enhancement of this coupling to the bath will occur and thereby facilitate the task, as discovered by us. A general task may also require state and energy transfer, or entanglement of noninteracting parties via shared modes of the bath which call for maximizing the shared (two-partite) couplings with the bath, but suppressing the single-partite couplings. For such tasks, a more subtle interplay of Zeno and anti-Zeno dynamics may be optimal. We have therefore constructed a general framework for optimizing the way a system interacts with its environment to achieve a desired task. This optimization consists in adjusting a given “score” that quantifies the success of the task, such as the targeted fidelity, purity, entropy, entanglement, or energy by dynamical modification of the system-bath coupling spectrum on demand.

Highlights

  • Due to the ongoing trends of device miniaturization, increasing demands on speed and security of data processing, along with requirements on measurement precision in fundamental research, quantum phenomena are expected to play an increasing role in future technologies

  • We find that the fidelity is increased using the “counterintuitive” sequence of detunings as compared to the static choice of maximal detuning, or compared to the dynamically enhanced fidelity |⟨Ψ(0)|Ψ(t)⟩|2 obtained without gate operations

  • A full description of this approach is beyond the scope of this work, but we present its most essential aspects and how it can be incorporated into the general framework described above

Read more

Summary

Introduction

Due to the ongoing trends of device miniaturization, increasing demands on speed and security of data processing, along with requirements on measurement precision in fundamental research, quantum phenomena are expected to play an increasing role in future technologies. Special attention must be paid to omnipresent decoherence effects, which hamper quantumness [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70] These may have different physical origins, such as coupling of the system to an external environment (bath), noise in the classical fields controlling the system, or population leakage out of a relevant system subspace. The underlying dynamics must be Zeno-like yielding suppressed coupling to the bath

Objectives
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.