Abstract

Random matrix models consisting of normal matrices, defined by the sole constraint $[N^{\dag},N]=0$, will be explored. It is shown that cubic eigenvalue repulsion in the complex plane is universal with respect to the probability distribution of matrices. The density of eigenvalues, all correlation functions, and level spacing statistics are calculated. Normal matrix models offer more probability distributions amenable to analytical analysis than complex matrix models where only a model wth a Gaussian distribution are solvable. The statistics of numerically generated eigenvalues from gaussian distributed normal matrices are compared to the analytical results obtained and agreement is seen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.