Abstract
The study of universal critical behavior is a crucial issue in a continuous phase transition, which groups various critical phenomena into universality classes for revealing microscopic electronic behaviors. The understanding of the nature of magnetism in Eu-based ferromagnetic superconductors is largely impeded by the infeasibility of performing inelastic neutron scattering measurements to deduce the microscopic magnetic behaviors and the effects on the superconductivity, due to the significant neutron absorption effect of natural $^{152}$Eu and unavailability of large single crystals. However, by systematically combining the neutron diffraction experiment, the first-principles calculations, and the quantum Monte Carlo simulations, we have obtained a perfectly consistent universal critical exponent value of $\beta=0.385(13)$ experimentally and theoretically for Eu(Fe$_{0.75}$Ru$_{0.25}$)$_{2}$As$_{2}$, from which the magnetism in the Eu-based ferromagnetic superconductors is identified as the universal class of a three-dimensional anisotropic quantum Heisenberg model with long-range magnetic exchange coupling. This study not only clarifies the nature of microscopic magnetic behaviors in the Eu-based ferromagnetic superconductors, but also opens a new avenue of systemic methodology for studying the universal critical behaviors associated with magnetic phase transitions in the area of magnetism and the spin fluctuations effects on the unconventional superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.