Abstract

The Majorana search is caught up in an extensive debate about the false-positive signals from nontopological Andreev bound states. We introduce a remedy using the dissipative probe to generate electron-boson interaction. We theoretically show that the interaction-induced renormalization leads to significantly distinct universal zero-bias conductance behaviors, i.e., distinct characteristic power law in temperature, for different types of Andreev reflections, that show a sharp contrast to that of a Majorana zero mode. Various specific cases have been studied, including the cases in which two charges involved in an Andreev reflection process maintain or lose coherence, and the cases for multiple Andreev bound states with or without a Majorana. A transparent list of conductance features in each case is provided to help distinguish the observed subgap states in experiments, which also promotes the identification of Majorana zero modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call