Abstract
We show that an x-ray emission signature associated with acceleration phase mass injection [R. C. Shah etal., Phys. Rev. E 103, 023201 (2021)PRESCM2470-004510.1103/PhysRevE.103.023201] correlates with poor experimental hot-spot convergence and a reduced neutron production relative to expectations. It is shown that with increased target mass as well as with higher-design adiabats, this signature is reduced, whereas with increased debris on the target, the signature is increased. We estimate that the vapor region in typical best designs may have up to 2× the assumed hydrogen mass at the start of deceleration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.