Abstract
The density matrix renormalization group (DMRG) is widely acknowledged as a highly effective and accurate method for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study of two-dimensional systems encounters challenges due to the limited entanglement encoded in the underlying wave-function Ansatz, known as the matrix product state. Conversely, Clifford circuits offer a promising avenue for simulating states with substantial entanglement, albeit confined to stabilizer states. In this work, we present the seamless integration of Clifford circuits within the DMRG algorithm, leveraging the advantages of both Clifford circuits and DMRG. This integration leads to a significant enhancement in simulation accuracy with small additional computational cost. Moreover, this framework is useful not only for its current application but also for its potential to be easily adapted to various other numerical approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.