Abstract

With a customized characterization of types, every universal one-to-one coding algorithm can be described as follows: assign sequences to binary strings based on their type class sizes from smallest to largest. With this view, the universal coding problem is to optimally characterize types. In this paper, this Type Size approach is studied for universal source coding of an exponential family of distributions, using the most natural type class definition: two sequences are in the same type class if and only if they are indistinguishable in the sense that they have the same probability for every distribution in the family. This characterization is called the point type class. Exact third-order coding rate is derived for the resulting compression algorithm, revealing that the point type approach, while natural, is sub-optimal compared to the quantized type method, which was previously proposed by the authors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.