Abstract

We consider the use of second order statistics in two-stage universal source coding. Examples of two-stage universal codes include the weighted universal vector quantization (WUVQ), weighted universal bit allocation (WUBA), and weighted universal transform coding (WUTC) algorithms. The second order statistics are incorporated in two-stage universal source codes in a manner analogous to the method by which second order statistics are incorporated in entropy constrained vector quantization (ECVQ) to yield conditional ECVQ (CECVQ). In this paper, we describe an optimal two-stage conditional entropy constrained universal source code along with its associated optimal design algorithm and a fast (but nonoptimal) variation of the original code. The design technique and coding algorithm here presented result in a new family of conditional entropy constrained universal codes including but not limited to the conditional entropy constrained WUVQ (CWUVQ), the conditional entropy constrained WUBA (CWUBA), and the conditional entropy constrained WUTC (CWUTC). The fast variation of the conditional entropy constrained universal codes allows the designer to trade off performance gains against storage and delay costs. We demonstrate the performance of the proposed codes on a collection of medical brain scans. On the given data set, the CWUVQ achieves up to 7.5 dB performance improvement over variable-rate WUVQ and up to 12 dB performance improvement over ECVQ. On the same data set, the fast variation of the CWUVQ achieves identical performance to that achieved by the original code at all but the lowest rates (less than 0.125 bits per pixel).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.