Abstract

ABSTRACTThis paper considers the problem of global asymptotic regulation via output feedback for a class of uncertain feedforward nonlinear systems with input and state delays, where the bounds of time delays are unknown. With the help of the high-gain scaling approach and the idea of universal adaptive control, we explicitly construct an adaptive output compensator with a novel positive dynamic gain which compensates simultaneously the unknown delays and the output growth rate with unknown constant. Based on such output compensator, we reduce the conservatism of the restrictive conditions imposed on nonlinearities to generalise the existing results. By the Lyapunov–Krasovskii theorem, a delay-independent controller design scheme is proposed to guarantee that all the closed-loop signals are globally bounded while rendering the states of original system and the estimate states to globally asymptotically converge to zero. Finally, two illustrative examples are given to show the usefulness of the proposed design method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call