Abstract

Objective measurement of gaze pattern and eye movement during untethered activity has important applications for neuroscience research and neurological disease detection. Current commercial eye-tracking tools rely on desk-top devices with infrared emitters and conventional frame-based cameras. Although wearable options do exist, the large power-consumption from their conventional cameras limit true long-term mobile usage. The query-driven Dynamic Vision Sensor (qDVS) is a neuromorphic camera which dramatically reduces power consumption by outputting only intensity-change threshold events, as opposed to full frames of intensity data. However, such hardware has not yet been implemented for on-body eye-tracking, but the feasibility can be demonstrated using a mathematical simulator to evaluate the eye-tracking ca-pabilities of the qDVS under controlled conditions. Specifically, a framework utilizing a realistic human eye model in the 3D graphics engine, Unity, is presented to enable the controlled and direct comparison of image-based gaze tracking methods. Eye-tracking based on qDVS frames was compared against two different conventional frame eye-tracking methods - the traditional ellipse pupil-fitting algorithm and a deep learning neural network inference model. Gaze accuracy from qDVS frames achieved an average of 93.2% for movement along the primary horizontal axis (pitch angle) and 93.1 % for movement along the primary vertical axis (yaw angle) under 4 different illumination conditions, demonstrating the feasibility for using qDVS hardware cameras for such applications. The quantitative framework for the direct comparison of eye tracking algorithms presented here is made open-source and can be extended to include other eye parameters, such as pupil dilation, reflection, motion artifact, and more.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.