Abstract

AbstractAs a typical hard but brittle material, Si tends to fracture abruptly at a stress well below its theoretical strength, even if the tested volume goes down to submicron scale, at which materials are usually nearly free of flaws or extended defects. Here, via the thermal–oxidation–mediated healing of the surface that is the preferred site for cracks or dislocations initiation, the premature fracture can be effectively inhibited and the over 50% homogeneous plastic strain with the near‐theoretical strength (twice the value of the unhealed counterpart) are united in submicron‐sized Si particles. In situ transmission electron microscope observations and atomistic simulations elucidate the confinement effect from the passivated and smoothened thermal oxide, which retards the dislocation nucleation and transforms the dominant deformation mechanism from partial dislocation to the more mobile full dislocation. This work demonstrates an effective and feasible surface engineering pathway to optimize the mechanical properties of Si at small scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.