Abstract

We show that if U is a Buekenhout-Metz unital (with respect to a point P) in any translation plane of order q2with kernel containing GF(q), then U has an associated 2-(q2,q+1,q) design which is the point-residual of an inversive plane, generalizing results of Wilbrink, Baker and Ebert. Further, our proof gives a natural, geometric isomorphism between the resulting inversive plane and the (egglike) inversive plane arising from the ovoid involved in the construction of the Buekenhout-Metz unital. We apply our results to investigate some parallel classes and partitions of the set of blocks of any Buekenhout-Metz unital.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.