Abstract
An incidence structure consists of two sets of elements, called points and blocks, together with a relation, called incidence, between elements of the two sets. Well-known examples are inversive planes, in which the blocks are circles, and projective and affine planes, in which the blocks are lines. Thus in various examples of incidence structures, the blocks may have various interpretations. Very shortly, however, we shall impose a condition (Axiom A) which ensures that the blocks behave like lines. In anticipation of this, we shall refer to the set of blocks as the set of lines. Also, we shall employ the usual terminology of incidence, such as “lies on,” “passes through,” “meet,” “join.” etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.