Abstract

The influence of unit Reynolds number (Re_1=17.5times 10^{6}–80times 10^{6},text {m}^{-1}), Mach number (M= 0.35–0.77) and incompressible shape factor (H_{12} = 2.50–2.66) on laminar–turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar–turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{text {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called ‘unit Reynolds number effect’, which is an increase of Re_{text {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (‘Mach number effect’). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien–Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to correct the determined critical N-factors. Thereby, a found dependency of the determined critical N-factors on H_{12} decreased, leading to an average critical N-factor of about 9.5 with a standard deviation of sigma approx 0.8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.