Abstract

Unit disk graphs are the intersection graphs of unit diameter closed disks in the plane. This paper gives a polynomial-time reduction from SATISFIABILITY to the problem of recognizing unit disk graphs. Equivalently, it shows that determining if a graph has sphericity 2 or less, even if the graph is planar or is known to have sphericity at most 3, is NP-hard. We show how this reduction can be extended to 3 dimensions, thereby showing that unit sphere graph recognition, or determining if a graph has sphericity 3 or less, is also NP-hard. We conjecture that K-sphericity is NP-hard for all fixed K greater than 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.