Abstract
Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.